Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis(dihydronium) naphthalene-1,5disulfonate

Genivaldo Júlio Perpétuo ${ }^{\text {a }}$ and Jan Janczak ${ }^{\text {b* }}$

${ }^{\text {a }}$ Departamento de Fisica, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, CEP 35.400-000, Ouro Preto, MG, Brazil, and ${ }^{\mathbf{b}}$ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław, Poland
Correspondence e-mail: j.janczak@int.pan.wroc.pl
Received 9 November 2007
Accepted 26 November 2007
Online 22 December 2007
The title compound is a salt, $2 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-}$, in which the anion lies across an inversion centre in the space group $C 2 / c$, while the cation contains a short but noncentred $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The ionic components are linked by charge-assisted $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a threedimensional framework structure.

Comment

In solid hydrates of strong acids, the H atom has been found to be hydrated to form a series of cations which have been characterized as $\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}, \mathrm{H}_{7} \mathrm{O}_{3}{ }^{+}$and $\mathrm{H}_{9} \mathrm{O}_{4}{ }^{+}$depending upon the degree of hydration. A search of the Cambridge Structural Database (Version 5.28; Allen, 2002) for structures containing the naphthalene-1,5-disulfonate anion yielded only seven examples, all salts of the metals of groups 1 and 2 (Cai et al., 2001). The structure of naphthalene-1,5-disulfonic acid itself is not known. We report here the crystal structure of naphthalene-1,5-disulfonic acid tetrahydrate, in which the H atoms of the $\mathrm{SO}_{3} \mathrm{H}$ groups are transferred to the water molecules to form the salt $2 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6}\left(\mathrm{SO}_{3}\right)_{2}{ }^{2-}$, (I).

(I)

The anion in (I) lies across a centre of inversion so that the asymmetric unit of (I) consists of one-half of a naphthalene1,5 -disulfonate anion and a $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation (Fig. 1). The naphthalene ring of the anion is essentially planar [the greatest deviations of the C atoms from the weighted mean ring plane are smaller than 0.010 (2) Å], but its bond distances exhibit significant differences from those of naphthalene itself (Brock \& Dunitz, 1982; Oddershede \& Larsen, 2001). The C2-C3,
$\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$ bonds [symmetry code: (i) $-x+1,-y$, $-z+1$; Table 1] are significantly longer than the other $\mathrm{C}-\mathrm{C}$ bonds within the ring. The distortions are the result of the substitution effect of the SO_{3} groups joined to the ring at the 1,5-positions. The ab initio gas-phase geometry calculated for an isolated anion shows quite good correlation between the

Figure 1
A view of (I), showing displacement ellipsoids at the 50% probability level and H atoms as spheres of arbitrary radii. Hydrogen bonds are drawn as dashed lines.

Figure 2
Results of the optimized molecular orbital calculations (B3LYP/6$31+\mathrm{G}^{*}$) for the naphthalene-1,5-disulfonate anion ($\AA,{ }^{\circ}$).
$\mathrm{C}-\mathrm{C}$ bonds and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles within the ring (Fig. 2). Thus, the distortions arise mainly from the electronic structure and to a lesser degree from the molecular interaction as well as from the crystal packing forces. The $\mathrm{S}-\mathrm{O}$ bonds of the $\mathrm{SO}_{3}{ }^{-}$ group are all intermediate in length between double $\mathrm{S}=\mathrm{O}$ and single bonds (Allen et al., 1987), indicating charge delocalization on to all O atoms of this group.

The $\mathrm{C}-\mathrm{S}$ bond length in the crystal structure is shorter than that calculated for the gas-phase structure $(1.841 \AA)$, owing to the interactions of negatively charged $\mathrm{SO}_{3}{ }^{-}$groups with the π aromatic ring. In the crystal structure, this interaction decreases as a result of the hydrogen-bonding system, which reduces the charge on the $\mathrm{SO}_{3}{ }^{-}$groups. The small differences between the experimental $\mathrm{S}-\mathrm{O}$ bond lengths result from the strengths of the hydrogen bonds in which the O atoms are involved (Table 2).

The acidic H atom is dihydrated such that pairs of water molecules are joined together via a short $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to form a discrete $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$ion. However, the acidic H atom is not located at the centre between the O atoms, but closer to one of the two water molecules (Table 2). This is in contrast to the results of molecular orbital (MO) calculations performed for an isolated $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation, which is predicted to be symmetric $(\mathrm{O} \cdots \mathrm{O}=2.42 \AA, \mathrm{O}-\mathrm{H}=1.21 \AA$ and $\mathrm{O}-$ $\mathrm{H}-\mathrm{O}=177^{\circ}$), although in the crystal structure the cation is nonsymmetrical. $A b$ initio MO calculations indicate that substantial energy is involved in the hydration of the hydronium ion (e.g. $\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{5} \mathrm{O}_{2}^{+}, 37 \mathrm{kcal} \mathrm{mol}^{-1}$). The $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$ion has a gauche conformation, with a dihedral angle of 99.5°, as defined by the dihedral angle between the O4/H41/ H 42 and O5/H51/H52 planes. Thus, the bonding arrangement together with the lone pair of electrons around each O atom in $\mathrm{H}_{5} \mathrm{O}_{2}^{+}$is tetrahedral. However, because of the hydrogenbonding system and, especially, the lone pair of electrons on both O atoms, the tetrahedron is significantly distorted, since the lone pair of electrons affords a wider region than the bonding pair, as predicted by the valence-shell electron-pair repulsion model (Gillespie, 1963, 1992).

The molecular arrangement in the crystal structure of (I) is mainly determined by relatively strong and directional hydrogen bonds (Table 2), and to a lesser degree by a $\pi-\pi$ interaction between the naphthalene ring systems, where the interplanar spacing is ca $3.53 \AA$ (Fig. 3). This value is comparable to the sum of the C -atom van der Waals radii of

Figure 3
A view of the crystal packing in (I), showing the three-dimensional hydrogen-bonded network. H atoms have been omitted for clarity.
the π-ring system (Pauling, 1967). However, as a result of the mutual shift of the rings, the $\pi-\pi$ interaction is not fully effective. The $\pi-\pi$ overlapping between the rings takes place only via the outermost $\mathrm{C}-\mathrm{C}$ bonds ($\mathrm{C} 1-\mathrm{C} 5^{\mathrm{i}}$ and $\mathrm{C} 5-\mathrm{C} 1^{\mathrm{i}}$). The naphthalene-1,5-disulfonate anions are stacked in the crystal structure along the b axis at $z=0$ and $z=\frac{1}{2}$, and they make an angle of 17.7° with the (010) plane, so forming sheets parallel to (001). The $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cations are located between these sheets and join together via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network. Each $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation links four anions. Atom O 1 of the $\mathrm{SO}_{3}{ }^{-}$group is involved in two hydrogen bonds, while the other two O atoms of $\mathrm{SO}_{3}{ }^{-}$are each involved in one hydrogen bond (Table 2).

Experimental

Suitable crystals of (I) were obtained by slow evaporation of an aqueous solution of naphthalene-1,5-disulfonic acid. MO calculations were performed using GAUSSIAN98 (Frisch et al., 1998).

Crystal data

$2 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} . \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-}$
$M_{r}=360.37$
Monoclinic, C2/c
$a=9.1183$ (18) £
$b=7.1051(14) \AA$
$c=22.954$ (4) \AA
$\beta=95.08$ (1) ${ }^{\circ}$

Data collection

Kuma KM-4 diffractometer with
CCD area detector
Absorption correction: analytical, face-indexed (SHELXTL; Sheldrick, 1990b) $T_{\text {min }}=0.884, T_{\text {max }}=0.961$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.077$
$S=1.06$
1835 reflections
116 parameters
$V=1481.3(5) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=295$ (2) K
$0.32 \times 0.28 \times 0.11 \mathrm{~mm}$

9288 measured reflections
1835 independent reflections
1575 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{S} 1-\mathrm{O} 3$	$1.4431(12)$	$\mathrm{C} 1-\mathrm{C} 5^{\mathrm{i}}$	$1.406(2)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4475(11)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.4281(18)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.4683(11)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.411(2)$
$\mathrm{S} 1-\mathrm{C} 2$	$1.7703(13)$	$\mathrm{C} 3-\mathrm{C} 3^{\mathrm{i}}$	$1.431(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.361(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.357(2)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	$113.54(7)$	$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 2$	$107.27(7)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 1$	$111.35(7)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 2$	$106.80(7)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	$111.02(7)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 2$	$106.42(6)$

Symmetry code: (i) $-x+1,-y,-z+1$.

H atoms bonded to C atoms were treated as riding in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$. H atoms bonded to O atoms were located in difference maps and their coordinates were refined [with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$], giving a range of $\mathrm{O}-\mathrm{H}$ distances of $0.80(4)-0.86(4) \AA$ for the terminal H atoms, and distances of 1.02 (4) and 1.42 (4) \AA for the bridging H atom.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O4-H2 . O 5	1.02 (4)	1.42 (4)	2.416 (2)	163 (3)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 1$	0.86 (3)	1.76 (3)	2.6059 (19)	167 (2)
$\mathrm{O} 4-\mathrm{H} 42 \cdots \mathrm{O} 2^{\text {ii }}$	0.82 (3)	1.83 (3)	2.6294 (17)	164 (2)
O5-H51 . $\mathrm{O}^{\text {3 }}{ }^{\text {iii }}$	0.80 (4)	1.90 (4)	2.6562 (19)	156 (4)
$\mathrm{O} 5-\mathrm{H} 52 \cdots \mathrm{O} 1^{\text {iv }}$	0.86 (4)	1.83 (4)	2.6891 (19)	171 (4)

Symmetry codes: (ii) $-x+1, y,-z+\frac{3}{2}$; (iii) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (iv) $x+\frac{1}{2}, y+\frac{1}{2}, z$.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990b); software used to prepare material for publication: SHELXL97.

This work was financially supported by the Ministry of Science and Information Society Technologies (project No. 3 T09A 121 28).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3169). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Brock, C. P. \& Dunitz, J. D. (1982). Acta Cryst. B38, 2218-2228.
Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. \& Chen, X.-M. (2001). Acta Cryst. B57, 520-530.
Frisch, J. M. et al. (1998). GAUSSIAN98. Revision A3. Gaussian Inc., Pittsburgh, PA, USA.
Gillespie, R. J. (1963). J. Chem. Educ. 40, 295-301.
Gillespie, R. J. (1992). Chem. Soc. Rev. 21, 59-69.
Oddershede, J. \& Larsen, S. (2001). J. Phys. Chem. A, 108, 1057-1063.
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Versions 171.31.8. Oxford Diffraction Poland, Wrocław, Poland.

Pauling, L. (1967). The Chemical Bond. Ithaca: Cornell University Press. Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

